Potential of moringa seed husk as a possible absorbent

Main Article Content

Dayrel Bravo Elers
Martha Mazorra Mestre
Manuel Pla Duporte
Cándida Ferrer Serrano

Abstract

In Cuba, the main source of renewable energy is biomass, and the greatest energy potential is sugarcane biomass, but there are other sources that are important in the local order or that their use is convenient from the environmental point of view, not only as energy resource. The Moringa oleífera seed that is used for the production of oils produces a significant volume of shell that constitutes biomass in this crop, in Cuba this residue is not used and it has not been studied in the application of activated carbon. In the present work, it is proposed to investigate the potential of the Moringa oleífera seed husk, so the purpose of using it is a positive aspect in Cuba today. The objective of the project is aimed at exploring the potential of this biomass for its possible transformation into activated carbon. Documentary analysis is carried out, through original and review articles, biomasses from rice and coconut were considered, fundamentally, in practical activity these biomasses have been evaluated for these purposes, which allows us to conclude that the seed husk of Moringa oleífera can be an alternative to obtain coal. It is proposed to start studies characterizing the seed shell of Moringa oleífera, carry out its carbonization by means of a thermochemical process such as pyrolysis.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bravo Elers, D., Mazorra Mestre, M., Pla Duporte, M., & Ferrer Serrano, C. (2023). Potential of moringa seed husk as a possible absorbent. Eco Solar, (83), https://cu-id.com/2220/n83e12. Retrieved from http://ecosolar.cubaenergia.cu/index.php/ecosolar/article/view/132
Section
Artículo original

References

Arteaga, L.E., et al. (2015). Gasificación de biomasa para la producción sostenible de energía. Revisión de las tecnologías y barreras para su aplicación. Afinidad, Vol. 72 No. 570, ISSN 0001-9704, pp. 138-145.
Basile, L. et al., (2014) Influence of pressure on the heat of biomass pyrolysis Fuel, 137: pp. 277-284.
Basterra, L.E. et al. (2020). Actualización del balance de biomasa con fines energéticos en la Argentina. http://www.probiomasa.gob.ar/_pdf/19-Actualizacion-balance-biomasa.pdf.
Biswas, B. et al., (2018). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource technology, 237: pp. 57-63.
Bustamante García, V. et al. (2016). Química de la biomasa vegetal y su efecto en el rendimiento durante la torrefacción, Revista Mexicana de Ciencias Forestales, 38 (7), pp. 5-23.
Goche, J.R. et al. (2023). Propiedades físicas y biomasa fustal de Pinus engelmannii proveniente de una plantación en Durango. Ecosistemas y Recursos Agropecuarios, 1(10). https://doi.org/10.19136/era.a10n1.3004
Gómez, N. et al., (2018). Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale. Journal of cleaner production, 120: pp. 181-190.
Herrera, J.A.L.C., (2020). Energía de la biomasa y el agua, Editorial Elearning, SL.
Isahak, W.N.R.W. et al., (2012). A review on bio-oil production from biomass by using pyrolysis method. Renewable and sustainable energy reviews, 16(8): pp. 5910-5923.
Klug, M. (2012). Pirólisis, un proceso para derretir la biomasa. Revista de Química, 26 (1-2), pp. 37-40. https://revistas.pucp.edu.pe/index.php/quimica/article/download/5547/5543/
Medina Pinos, J.G. (2020). Caracterización de biomasa residual de la poda de árboles del cantón Cuenca mediante el análisis TGA, elemental y poder calórico para la producción de Biochar. Universidad Católica de Cuenca. En: https://dspace.ucacue.edu.ec/. Consultado en julio de 2023.
Sánchez, Y. et al. (2019). Evaluación de las condiciones experimentales básicas para la producción de biomasa a partir de la microalga Chlorella vulgaris. Afinidad, 76 (585).
Serrano, C.F. (2018). Caracterización físico-química del aceite de semillas de Moringa oleífera para su uso con fines energéticos, Centros de Estudio de Tecnologías Energéticas Renovables, Ceter, Universidad Tecnológica de La Habana José Antonio Echeverría.
Singh, A.K. et al. (2020). Phytochemical, nutraceutical and pharmacological attributes of a functional crop Moringa oleífera Lam: An overview. South African Journal of Botany,129: pp. 209-220.
Tumuluru, J.S. et al. (2012). Formulation, pretreatment, and densification options to improve biomass specifications for co-firing high percentages with coal. Industrial Biotechnology, 8 (3), pp. 113-132.
Villalba Vidales, J.A. y Arzola de la Peña, N. (2015). Modelos matemáticos y experimentales sobre el secado de biomasa. Ingeniería Desarrollo 33(2): pp. 301-330.
Zheng, H. et al. (2013). Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environmental Pollution, 181, págs. 60-67. http://dx.doi.org/10.1016/j.envpol.2013.05.056