Methodological approaches for assessing the potential of urban morphologies to adapt to global warming
Main Article Content
Abstract
Cities and buildings play a decisive role in adapting to climate change and particularly to global warming. This article offers the partial results of the first stage of a research aimed at evaluating urban morphological types with a view to proposing actions and transformation strategies that favour their adaptation to climate change. This is a theoretical investigation in which the results of the literature review are processed with the aim of identifying the main methods and indicators used on a global scale, in order to specify the approaches to be applied in the following stages of the study. It is concluded that these will have to be adapted to the information and technologies available in Cuba and to local particularities, evaluating, through monitoring and simulation, the upstream and downstream behaviour in different scenarios by means of cost-benefit analysis.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Bassolino, E. y Cerreta, M. (2021). Climate Adaptive Design Index for the Built Environment (CADI-BE): An Assessment System of the Adaptive Capacity to Urban Temperatures Increase. Energies 2021, 14, 4630. https://doi.org/10.3390/en14154630.
Batista, R. J. R., Goncalves, F., Portofrío da oxha, R. (2016). Present Climate and future projections of the thermal comfort index fot the metropolitan region of Sao Paulo, Brazil. https://doi.org/10.1007/s10584-016-1690-5.
Bregiatto de Oliveira, P. dos S., Astigarraga, R., Borelli, G., Saiz, P. J. y Nader, G. (2015). Consequences of verticalization. Proceedings of the 31nd International Conference on Passive and Low Energy Architecture (PLEA 2015). Bologna, Italia. http://plea-arch.org/plea-proceedings/.
Buzási, A., Pálölgyi, T. y Csete, M. S. (2021). Assessment of climate change performance of urban development projects – Case of Budapest, Hungary. Cities 114 (2021) 103215. https://doi.org/10.1016/j.cities.2021.103215.
Campana, P. E., Quan, S. J., Robbio, F. I., Lundblad, A., Zhang, Y., Ma, T., Karlsson, B y Yan, J. (2017). Optimization of a residential district with special consideration on energy and water reliability. Applied Energy 194 (2017) 751–764. http://dx.doi.org/10.1016/j.apenergy.2016.10.005.
Caputo, P-, Pasetti, G. y Ferrari, S. (2019). Implementation of an urban efficiency index to comprehend post-metropolitan territories—The case of Greater Milan in Italy. Sustainable Cities and Society 48 (2019) 101565. https://doi.org/10.1016/j.scs.2019.101565.
Czupich, M., Łapinska, J. y Bartos, V. (2022). Environmental Sustainability Assessment of the European Union’s Capital Cities. International Journal of Environmental Research and Public Health 2022, 19,4327. https://doi.org/10.3390/ijerph19074327.
Deilami, K., Kamruzzaman y Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30. https://doi.org/10.1016/j.jag.2017.12.009.
Dos Santos Gaspara, J., Cardoso Marquesb, A, y Fuinhas, J. A. (2017). The traditional energy-growth nexus: A comparison between sustainable development and economic growth approaches. Ecological Indicators 75 (2017) 286–296. http://dx.doi.org/10.1016/j.ecolind.2016.12.048.
Elavarasan, R. M., Pugazhendhi, R., Irfan, M., Mihet-Popa, L., Campana, P. E. y Khan, I. A. (2022). A novel Sustainable Development Goal 7 composite index as the paradigm or energy sustainability assessment: A case study from Europe. Applied Energy 307 (2022) 118173. https://doi.org/10.1016/j.apenergy.2021.118173.
Fröhlich, D. y Matzarakis, A. (2013). Modeling of changes in thermal bioclimate: examples based on urban spaces in Freiburg, Germany. Theor Appl Climatol (2013) 111:547–558. https://doi.org/10.1007/s00704-012-0678-y.
Gandini, A., Quesada, L., Prieto, I. y Garmendia, L. (2021). Climate change risk assessment: A holistic multi-stakeholder methodology for the sustainable development of cities. Sustainable Cities and Society 65 (2021) 102641. https://doi.org/10.1016/j.scs.2020.102641.
Gauk, M. y Roose. A. (2016). Assessing the energy intensity of peri-urbanisation: A master plan approach. Energy and Buildings 128 (2016) 540–552. http://dx.doi.org/10.1016/j.enbuild.2016.07.003.
Giannaros, T. M., Melas, D. y Matzarakis, A. (2015). Evaluation of thermal bioclimate based on observational data and numerical simulations: an application to Greece. Int J Biometeorol, (59),151–164. https://doi.org/10.1007/s00484-014-0832-6.
Gilabert Mestre, J. (2021). Cubiertas urbanas y comportamiento térmico en escenarios de temperaturas extremas del dato al geoservicio [Tesis doctoral]. Universidad de Barcelona. https://dialnet.unirioja.es/servlet/tesis?codigo=304379.
Hachem-Vermettea, C. y Singh, K. (2022). Optimization of the mixture of building types in a neighbourhood and their energy and environmental performance. Energy&Buildings204(2019) 109499. https://doi.org/10.1016/j.enbuild.2019.109499.
Hu, L. y Brunsell, N.A. (2013). The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sensing of Environment 134 (2013) 162–174. http://dx.doi.org/10.1016/j.rse.2013.02.022.
Kilkis, S. (2014). Energy system analysis of a pilot net-zero exergy district. Energy Conversion and Management 87 (2014) 1077–1092. http://dx.doi.org/10.1016/j.enconman.2014.05.014.
Liang, J. Gonga, J., Sun, J. and Liu, J. (2017). A customizable framework for computing sky view factor from large-scale 3D city models. Energy and Buildings 149 (2017) 38–44. http://dx.doi.org/10.1016/j.enbuild.2017.05.024.
Lin, S. H., Huang, X., Fu. G., Chen, J. T., Zhao, X., Li, J. H. y Tzeng. G. H. (2021). Evaluating the sustainability of urban renewal projects based on a model of hybrid multiple-attribute decision-making. Land Use Policy 108 (2021) 105570. https://doi.org/10.1016/j.landusepol.2021.105570.
Luo, C., Ju, Y., Giannakis, M., Dong, P. y Wang, A. (2021). A novel methodology to select sustainable municipal solid waste management scenarios from three-way decisions perspective. Journal of Cleaner Production 280 (2021) 124312. https://doi.org/10.1016/j.jclepro.2020.124312.
MacGregor-Fors, I., Falfán, I., García-Arroyo, M., Lemoine-Rodríguez, R., Gómez-Martínez, M. A., Marín-Gómez, O. H., Pérez-Maqueo. O. y Equihua, M. (2021). A Novel Approach for the Assessment of Cities through Ecosystem Integrity. Land 2022, 11, 3. https://doi.org/10.3390/land11010003.
Martilli, A., Krayenhoff, E. S., y Nazarian, N. (2020). Is the Urban Heat Island intensity relevant for heat mitigation studies? Urban Climate, 31, 100541. https://doi.org/10.1016/j.uclim.2019.100541.
Mobaraki, A. y Oktay Vehbi, B. A. (2022). Conceptual Model for Assessing the Relationship between Urban Morphology and Sustainable Urban Form. Sustainability 2022, 14, 2884. https://doi.org/10.3390/su14052884.
Mouzourides, P., Kyprianou. A., Neophytou. M. K. A., Ching, J. y Choudhary, R. (2019). Linking the urban-scale building energy demands with city breathability and urban form characteristics. Sustainable Cities and Society 49 (2019) 101460. https://doi.org/10.1016/j.scs.2019.101460.
Nematchoua, M. K. y Reiter, S. (2019). Analysis, reduction and comparison of the life cycle environmental costs of an eco-neifhborhood in Belgium. Sustainable Cities and Society 48 (2019) 101558. https://doi.org/10.1016/j.scs.2019.101558.
Newbery, D. M. (2002). Spatial General Equilibrium and Cost-Benefit Analysis. Cost-Benefit Analysis: Environmental and Ecological Perspective. London and New York: Routledge Taylor and Francis Group.
Palusci, O. y Cecere, C. (2022). Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability 2022, 14, 3948. https://doi.org/10.3390/su14073948.
Pan, W., Yu, C. y Du, J. (2022). A dialectical system framework for green building assessment in high-density cities. Environmental Impact Assessment Review 97 (2022) 106860. https://doi.org/10.1016/j.eiar.2022.106860.
Pearlmutter, D., Jiao, D. y Garb, Y. (2014). The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. Int J Biometeorol (58), 2111–2127. https://doi.org/10.1007/s00484-014-0812-x.
Peponi, A., Morgado, P. y Kumble, P. (2022). Life cycle thinking and machine learning for urban metabolism assessment and prediction. Sustainable Cities and Society 80 (2022) 103754. https://doi.org/10.1016/j.scs.2022.103754.
Pérez Rosales, R. A. (2019). Procedimiento para evaluar la sostenibilidad de destinos ecoturísticos vinculados a comunidades rurales. Caso de estudio: Hotel Moka, Comunidad Las Terrazas [sin publicar]. Universidad Tecnológica de La Habana José Antonio Echeverría (Cujae), La Habana.
Renganathan, G. y Rohinton, E. (2018). The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: a review. Sustainable Cities and Society 937. https://doi.org/10.1016/j.scs.2018.01.024.
Rodríguez, J., Coch, H., De la Paz, G., Yeras, M. y Matzarakis, A. (2015). Human thermal comfort conditions and urban planning in hot-humid climates - The case of Cuba. International Journal of Biometeorology, 59(12), 1-14. https://doi.org/10.1007/s00484-015-1109-4.
Rodríguez Algeciras, J. A., Gómez Consuegra, L. y Matzarakis. A. (2016). Spatial-temporal study on the effects of urban street configurations onhuman thermal comfort in the world heritage city of Camagüey-Cuba. Building and Environment 101 (2016) 85e101. http://dx.doi.org/10.1016/j.buildenv.2016.02.026.
Salvati, A., Coch Roura, H. y Cecere, C. (2016). Urban heat island prediction in the mediterranean context: an evaluation of the urban weather generator model. ACE: Architecture, City and Environment, 11 (32): 135-156, 2016. https://doi.org/10.5821/ace.11.32.4836.
Segovia A. y Morillón, D. (2022). Análisis de la isla de calor urbana: Nuevos métodos y tecnologías. Instituto de Ingeniería UNAM. http://www.ii.unam.mx/es-mx/Investigacion/Proyecto/Paginas/analisis-isla-calor-urbana.aspx.
Stephan, A. y Stephan, L. (2014). Reducing the total life cycle energy demand of recent residential buildings in Lebanon. Energy 74 (2014) 618e637. http://dx.doi.org/10.1016/j.energy.2014.07.028.
Tan, Z., Ka-Lun Lau, K. y Nga, E. (2016). Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, (114), 265–274. Elsevier. https://doi.org/10.1016/j.enbuild.2015.06.031.
Vermeiren, K. Crols, T., Uljee, I., De Nocker, L. Beckx, C., Pisman. A., Broekx, S. y Poelmans, L. (2022). Modelling urban sprawl and assessing its costs in the planning process: A case study in Flanders, Belgium. Land Use Policy 113 (2022) 105902. https://doi.org/10.1016/j.landusepol.2021.105902.
Wua, A. N. y Biljecki, F. (2021). Roofpedia: Automatic mapping of green and solar roofs for an open roofscape registry and evaluation of urban sustainability. Landscape and Urban Planning 214 (2021) 104167. https://doi.org/10.1016/j.landurbplan.2021.104167.
Xiaodong, He et al. (2015). Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature. Int J Biometeorol, (59), 285–297. https://doi.org/10.1007/s00484-014-0841-5
Yu, Z., Zhang, J., Yang, G. y Schlaberg, J. (2021). New Method from the Graph Perspective for Evaluating and Mitigating Regional Surface Heat Islands. Remote Sens. 2021, 13, 1127. https://doi.org/10.3390/rs13061127.
Zhang, Y., Zheng. H. y Fath, B. D. (2014). Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing. Energy Policy 73 (2014) 540–551. http://dx.doi.org/10.1016/j.enpol.2014.04.029.