Solar energy. Complementary technologies (II): Smart grids
Main Article Content
Abstract
Smart grids differ from conventional electricity grids in that they allow energy and information to flow in two directions: from source to consumer and in reverse. Among other benefits, a smart grid enables active customer participation in regulating their costs; provides options for energy storage in batteries or other devices; and optimises the proper control of power from renewable sources such as solar or wind. Its primary objective is to optimise efficiency and the advantageous use of energy, while being able to prevent possible failures in the electricity grid.
Downloads
Download data is not yet available.
Article Details
How to Cite
González Arias, A. (2023). Solar energy. Complementary technologies (II): Smart grids. Eco Solar, (83), https://cu-id.com/2220/n83p19. Retrieved from http://ecosolar.cubaenergia.cu/index.php/ecosolar/article/view/115
Section
Artículo original
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Alotaibi, I., Abido, M.A., Khalid, M. y Savkin, A.V. (2020). A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources. Energies 13, 6269; doi:10.3390/en13236269.
Falvo, M.C., Martirano, L., Sbordone, D. y Bocci, E. (2013). Technologies for smart grids: A brief review. IEEE Xplore. 12th International Conference on Environment and Electrical Engineering. https://ieeexplore.ieee.org/abstract/document/6549544, DOI https://doi.org/10.1109/EEEIC.2013.6549544. Consultado marzo 2023.
Feng, P. y Qing, W. (2015). Redox Species of Redox Flow Batteries: A Review. Molecules. 20(11): pp. 20499–20517. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332057/, Consultado febrero 2023.
Gandoman, F.H., Ahmadi, A., Sharaf, A.M., Pierluigi, S. et. al. (2018). Renewable and Sustainable Energy Reviews, 82(1), pp. 502-514. https://doi.org/10.1016/j.rser.2017.09.062.
ICL (2023). Top Energy Trends to Watch Closely in 2023. https://www.icl-group.com/blog/renewable-energy-trends-solutions-2023/. Consultado enero 2023.
Kakran, S. y Chanana, S. (2018). Smart operations of smart grids integrated with distributed generation: A review. Renewable and Sustainable Energy Reviews, 81(1), pp. 524-535.
MGA Thermal, (s/a) Introducing the MGA Block. https://www.mgathermalstorage.com/about. Consultado marzo 2023.
Malik, F.H. y Lehtonen M. (2016). A review: Agents in smart grids. Electric Power Systems Research, 131, pp. 71-79. https://doi.org/10.1016/j.epsr.2015.10.004. Consultado marzo 2023.
Moreno Constante, A., Beltrán Ruiz, J. y Borja Soto, D. (2020). Automóviles Impulsados por Energía Solar: Una Revisión. Inv. Tecnológica IST Central Técnico, 2(2), http://www.investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/87. Consultado febrero 2023.
Nissan (2022). How Do Electric Cars Work? Nissan USA. https://www.nissanusa.com/experience-nissan/news-and-events/how-do-electric-cars-work.html. Consultado abril 2023.
Reed S., Sugo H. y Kisi E. (2018). High temperature thermal storage materials with high energy density and conductivity. Solar Energy, 163, pp. 307-314. https://doi.org/10.1016/j.solener.2018.02.005Get rights and content. Consultado marzo 2023.
Reed, S., Sugo, H., Kisi, E. y Richardson, P. (2019). Extended thermal cycling of miscibility gap alloy high temperature thermal storage materials. Solar Energy 185, pp. 333-340. https://doi.org/10.1016/j.solener.2019.04.075Get rights and content, Consultado marzo 2023.
Reuters (2022). Paid for and posted by Shell Energy. 3 renewable energy trends for 2023 and beyond. https://www.reuters.com/article/sponsored/shell-energy-renewable-energy-trends-2023. Consultado enero 2023.
Scada international (2022). Green future: 4 renewable energy trends to watch. https://scada-international.com/2022/10/07/green-future-4-renewable-energy-trends-to-watch/. Consultado marzo 2023.
US Dept. of Energy, https://www.smartgrid.gov/the_smart_grid/smart_grid.html
Xu, Q., Ji, Y.N., Qin, L.Y., Leung, P.K., Qiao, F., Li, Y.S. y Su, H.N. (2018). Evaluation of redox flow batteries goes beyond round-trip efficiency: A technical review. Journal of Energy Storage. 16, pp. 108-116. https://doi.org/10.1016%2Fj.est.2018.01.005. Consultado marzo 2023.
Falvo, M.C., Martirano, L., Sbordone, D. y Bocci, E. (2013). Technologies for smart grids: A brief review. IEEE Xplore. 12th International Conference on Environment and Electrical Engineering. https://ieeexplore.ieee.org/abstract/document/6549544, DOI https://doi.org/10.1109/EEEIC.2013.6549544. Consultado marzo 2023.
Feng, P. y Qing, W. (2015). Redox Species of Redox Flow Batteries: A Review. Molecules. 20(11): pp. 20499–20517. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332057/, Consultado febrero 2023.
Gandoman, F.H., Ahmadi, A., Sharaf, A.M., Pierluigi, S. et. al. (2018). Renewable and Sustainable Energy Reviews, 82(1), pp. 502-514. https://doi.org/10.1016/j.rser.2017.09.062.
ICL (2023). Top Energy Trends to Watch Closely in 2023. https://www.icl-group.com/blog/renewable-energy-trends-solutions-2023/. Consultado enero 2023.
Kakran, S. y Chanana, S. (2018). Smart operations of smart grids integrated with distributed generation: A review. Renewable and Sustainable Energy Reviews, 81(1), pp. 524-535.
MGA Thermal, (s/a) Introducing the MGA Block. https://www.mgathermalstorage.com/about. Consultado marzo 2023.
Malik, F.H. y Lehtonen M. (2016). A review: Agents in smart grids. Electric Power Systems Research, 131, pp. 71-79. https://doi.org/10.1016/j.epsr.2015.10.004. Consultado marzo 2023.
Moreno Constante, A., Beltrán Ruiz, J. y Borja Soto, D. (2020). Automóviles Impulsados por Energía Solar: Una Revisión. Inv. Tecnológica IST Central Técnico, 2(2), http://www.investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/87. Consultado febrero 2023.
Nissan (2022). How Do Electric Cars Work? Nissan USA. https://www.nissanusa.com/experience-nissan/news-and-events/how-do-electric-cars-work.html. Consultado abril 2023.
Reed S., Sugo H. y Kisi E. (2018). High temperature thermal storage materials with high energy density and conductivity. Solar Energy, 163, pp. 307-314. https://doi.org/10.1016/j.solener.2018.02.005Get rights and content. Consultado marzo 2023.
Reed, S., Sugo, H., Kisi, E. y Richardson, P. (2019). Extended thermal cycling of miscibility gap alloy high temperature thermal storage materials. Solar Energy 185, pp. 333-340. https://doi.org/10.1016/j.solener.2019.04.075Get rights and content, Consultado marzo 2023.
Reuters (2022). Paid for and posted by Shell Energy. 3 renewable energy trends for 2023 and beyond. https://www.reuters.com/article/sponsored/shell-energy-renewable-energy-trends-2023. Consultado enero 2023.
Scada international (2022). Green future: 4 renewable energy trends to watch. https://scada-international.com/2022/10/07/green-future-4-renewable-energy-trends-to-watch/. Consultado marzo 2023.
US Dept. of Energy, https://www.smartgrid.gov/the_smart_grid/smart_grid.html
Xu, Q., Ji, Y.N., Qin, L.Y., Leung, P.K., Qiao, F., Li, Y.S. y Su, H.N. (2018). Evaluation of redox flow batteries goes beyond round-trip efficiency: A technical review. Journal of Energy Storage. 16, pp. 108-116. https://doi.org/10.1016%2Fj.est.2018.01.005. Consultado marzo 2023.