The urban wind and its influence on the development and survival of renewable energy technologies in cities

Main Article Content

Ernesto Yoel Fariñas Wong
Brian Fleck
Héctor Baracaldo Alba
Alexeis Fernandez Bonilla

Abstract

The research is aimed at obtaining information about wind turbulence in urban environments for the development and installation of renewable energy technologies, based on data collected by two propane anemometers, near the ledge of the INTEC Building AH, The data presented correspond to measurements between the month of May 2017 to January 2020.


The data processing allowed to know that the behavior of the average wind speed at both measurement points is similar throughout the period. Wind roses show that in the location of the lowest height anemometer, the wind direction is more stable as these records have smaller dispersions. The hourly wind analysis corresponds to a site near the coast, where the speed rises rapidly at dawn reaching maximum values at noon, from there a plateau is seen, while the night speeds are discrete in all months, the highest values being at August and December.


Weibull velocity distributions for both anemometers, using factors, of form k = 2 and of scale c = 2,80 with average speed 2.48 m/s, it is appreciable greater accumulation of low velocities (range 1-3 m / s) in anemometer # 1, while for # 2 (higher) there is greater accumulation in the range of 3-7 m/s, while for speeds greater than 7 m/ s the accumulated have no appreciable differences.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fariñas Wong, E. Y., Fleck, B., Baracaldo Alba, H., & Fernandez Bonilla, A. (2020). The urban wind and its influence on the development and survival of renewable energy technologies in cities. Eco Solar, (71), 10-18. Retrieved from http://ecosolar.cubaenergia.cu/index.php/ecosolar/article/view/43
Section
Artículo original

References

Baracaldo, H.; E. Fariñas y F. A. Fernández (2017), «Evaluation of the wind behavior in urbanizations from the lines of currents and velocity fields of a computational model». Conferencia Internacional de Desarrollo Energético Sostenible. CIDES, Varadero, Noviembre 2017.
CNE. (agosto de 2017). https://www.cne.gob.do. Obtenido de Comisión Nacional de Energía: https://www.cne.gob.do/archivo/cantidad-de-usuarios-incorporados-al-programa-
de-medicion-neta/.
British Standard (mayo de 2006). «IEC 61400-2:2006. Part 2: Design requirements for small wind turbines». Bruselas, UK: International Electrotechnical Commission.
Fariñas, E.; B. Fleck, H. Baracaldo y A. Fernández (2017). «Preliminary proposal for the study of the turbulence of the wind the roofs of the buildings». Conferencia Internacional de Energía Renovable, La Habana, Cuba.
Fariñas, E.; G. Pandiell a (2016) «Estudio y simulación de un rotor con perfil híbrido para aerogeneradores de eje verticales». Conferencia de Ingeniería Mecánica, COMEC 2016. Santa Clara, Cuba.
Fields, J.; F. Oteri, R. Preus & I. Baring-Gould (2016). «Deployment of Wind Turbines in the Built Environment: Risks, Lessons, and Recommended Practices». Golden, Colorado: National Renewable Energy Laboratory (NREL).
Francisco Toja-Silv a, A.-S. M.-G. (2015). «Urban Wind Energy Exploitation Systems: Behaviour under Multidirectional Flow Condition-Opportunities and Challenges». Elsevier, 364-378.
F. Toja-Silv a; O. Lopez-García, Jorge Navarro C. Peralta (2016). «An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings». Applied Energy, 2016, vol. 164, issue C, 769-794.
Glober, D. (2013). Consideration of Urban Wind Power. San Francisco, California: David Glober, Potrero Hill.
GWEC (2018). Global Wind Statistics.
Karthikeya, B. R.; P. S. Negi & N. Srikanth (2016). «Wind resource assessment for urban renewable energy application in Singapore». Renewable Energy.