Potencialidades de la aplicación de la energía solar para el abasto de agua en zonas aisladas
Contenido principal del artículo
Resumen
La investigación muestra las potencialidades de la energía solar para garantizar el abasto de agua en comunidades aisladas. Se utiliza como caso de estudio una comunidad del municipio Báguanos de la provincia Holguín. Se tuvieron en cuenta variables como: potencialidades de las fuentes renovables de energía (FRE) en las comunidades, el estado y calidad del agua, el estado y calidad del suelo, así como los efectos de los fuertes vientos sobre los paneles solares. Los resultados obtenidos demostraron la factibilidad de la utilización de este tipo de energía en zonas aisladas.
Descargas
La descarga de datos todavía no está disponible.
Detalles del artículo
Cómo citar
Leyva Valdespino, A., & Aguilera Proenza, G. (2022). Potencialidades de la aplicación de la energía solar para el abasto de agua en zonas aisladas. Eco Solar, (81), 22-25. Recuperado a partir de http://ecosolar.cubaenergia.cu/index.php/ecosolar/article/view/107
Sección
Artículo original
Citas
Cabrera Martínez Ihosvany (2004). Sistemas fotovoltaicos para el bombeo de agua. Energía y Tú, 27, ISSN 1028-9925. http://www.cubasolar.cu/wp-content/uploads/2019/03/Energia27.zip
Centro Integrado de Tecnologías del Agua (CITA) (2000). Evaluación de molinos de viento Veleta y Delta F-8.
Chandel, S. S., Nagaraju Naik, M. y Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable
and Sustainable Energy Reviews, 49, 1084-1099. https://doi.org/https://doi.org/10.1016/j.rser.2015.04.083
Decreto Ley No 345. Del desarrollo de las fuentes renovables y el uso eficiente de la energía. 28 de noviembre de 2019. GOC-2019-1063-O95.
Durin, B., y Margeta, J. (2014). Analysis of the Possible Use of Solar Photovoltaic Energy in Urban Water Supply Systems. Water, 6(6), 1546-1561. https://www.mdpi.com/2073-4441/6/6/1546
Gaisma. (14 de julio de 2019). Sunrise, sunset, dawn and dusk times around the World. https://www.gaisma.com/en/location/holguin.html
González Martínez, P., Sarduy Valedón, L. y Puente Borrero, F. (2012). Molino de viento camagüeyano CITA Steere. Energía y Tú, 60, ISSN 1028-9925. http://www.cubasolar.cu/wp-content/
uploads/2019/03/Energia60.zip
González Martínez, P. J., Puente Borrero, F. R.l y Aguilar Pérez, J. (2012). Informe técnico de validación del molino de viento camagüeyano CITA Steere en condiciones reales de explotación.
Instituto Nacional de Recursos Hidráulicos (INRH) y Centro Integrado de Tecnología del Agua (CITA).
Jones, L. E., y Olsson, G. (2017). Solar Photovoltaic and Wind Energy Providing Water. Global challenges (Hoboken, NJ), 1(5), 1600022-1600022. https://doi.org/10.1002/gch2.201600022
Kougias, I., Bódis, K., Jäger-Waldau, A., Moner-Girona, M., Monforti-Ferrario, F., Ossenbrink, H., y Szabó, S. (2016). The potential of water infrastructure to accommodate solar PV systems
in Mediterranean islands. Solar Energy, 136, 174-182. https://doi.org/https://doi.org/10.1016/j.solener.2016.07.003
Moreno Figueredo, C. et al (2007). Diez preguntas y respuestas sobre energía eólica. Editorial Cubasolar, La Habana, ISBN 978-959-7113-34-8.
Muhsen, D. H., Khatib, T., y Nagi, F. (2017). A review of photovoltaic water pumping system designing methods, control strategies and field performance. Renewable and Sustainable
Energy Reviews, 68, 70-86. https://doi.org/https://doi.org/10.1016/j.rser.2016.09.129
Reca, J., Torrente, C., López-Luque, R., y Martínez, J. (2016). Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses. Renewable Energy, 85, 1143-1154. https://doi.org/https://doi.org/10.1016/j.renene.2015.07.056
Syahputra, R., y Soesanti, I. (2021). Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Reports,
7, 472-490. https://doi.org/https://doi.org/10.1016/j.egyr.2021.01.015
Unesco. (2014). The United Nations World Water Development Report 2014—Water and Enegy.
Unesco. (2019). The United Nations World Water Development Report—Executive Summary.
Wibowo, A. I., y Chang, K.-C. (2020). Solar energy-based water treatment system applicable to the remote areas: Case of Indonesia. Journal of Water, Sanitation and Hygiene for Development, 10(2), 347-356. https://doi.org/10.2166/washdev. 2020.003
Centro Integrado de Tecnologías del Agua (CITA) (2000). Evaluación de molinos de viento Veleta y Delta F-8.
Chandel, S. S., Nagaraju Naik, M. y Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable
and Sustainable Energy Reviews, 49, 1084-1099. https://doi.org/https://doi.org/10.1016/j.rser.2015.04.083
Decreto Ley No 345. Del desarrollo de las fuentes renovables y el uso eficiente de la energía. 28 de noviembre de 2019. GOC-2019-1063-O95.
Durin, B., y Margeta, J. (2014). Analysis of the Possible Use of Solar Photovoltaic Energy in Urban Water Supply Systems. Water, 6(6), 1546-1561. https://www.mdpi.com/2073-4441/6/6/1546
Gaisma. (14 de julio de 2019). Sunrise, sunset, dawn and dusk times around the World. https://www.gaisma.com/en/location/holguin.html
González Martínez, P., Sarduy Valedón, L. y Puente Borrero, F. (2012). Molino de viento camagüeyano CITA Steere. Energía y Tú, 60, ISSN 1028-9925. http://www.cubasolar.cu/wp-content/
uploads/2019/03/Energia60.zip
González Martínez, P. J., Puente Borrero, F. R.l y Aguilar Pérez, J. (2012). Informe técnico de validación del molino de viento camagüeyano CITA Steere en condiciones reales de explotación.
Instituto Nacional de Recursos Hidráulicos (INRH) y Centro Integrado de Tecnología del Agua (CITA).
Jones, L. E., y Olsson, G. (2017). Solar Photovoltaic and Wind Energy Providing Water. Global challenges (Hoboken, NJ), 1(5), 1600022-1600022. https://doi.org/10.1002/gch2.201600022
Kougias, I., Bódis, K., Jäger-Waldau, A., Moner-Girona, M., Monforti-Ferrario, F., Ossenbrink, H., y Szabó, S. (2016). The potential of water infrastructure to accommodate solar PV systems
in Mediterranean islands. Solar Energy, 136, 174-182. https://doi.org/https://doi.org/10.1016/j.solener.2016.07.003
Moreno Figueredo, C. et al (2007). Diez preguntas y respuestas sobre energía eólica. Editorial Cubasolar, La Habana, ISBN 978-959-7113-34-8.
Muhsen, D. H., Khatib, T., y Nagi, F. (2017). A review of photovoltaic water pumping system designing methods, control strategies and field performance. Renewable and Sustainable
Energy Reviews, 68, 70-86. https://doi.org/https://doi.org/10.1016/j.rser.2016.09.129
Reca, J., Torrente, C., López-Luque, R., y Martínez, J. (2016). Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses. Renewable Energy, 85, 1143-1154. https://doi.org/https://doi.org/10.1016/j.renene.2015.07.056
Syahputra, R., y Soesanti, I. (2021). Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Reports,
7, 472-490. https://doi.org/https://doi.org/10.1016/j.egyr.2021.01.015
Unesco. (2014). The United Nations World Water Development Report 2014—Water and Enegy.
Unesco. (2019). The United Nations World Water Development Report—Executive Summary.
Wibowo, A. I., y Chang, K.-C. (2020). Solar energy-based water treatment system applicable to the remote areas: Case of Indonesia. Journal of Water, Sanitation and Hygiene for Development, 10(2), 347-356. https://doi.org/10.2166/washdev. 2020.003