Climatización pasiva de viviendas con compuestos PCM

Contenido principal del artículo

Nelly Sarai Ramos Reyes
Francisco Antonio Horta Rangel
Arnaldo González Arias

Resumen

En años recientes han surgido diversos sistemas de climatización pasiva que no consumen energía; se basan en el uso de materiales PCM (del inglés Phase Change Materials), los cuales poseen una transición de fase con un valor notable del calor latente de fusión a la temperatura que se desea controlar. Se presentó una descripción del comportamiento de estos materiales durante el calentamiento y enfriamiento, así como los compuestos y técnicas más utilizados con este fin en la actualidad, a partir de una revisión documental. Se concluye que, además de los parámetros termodinámicos fundamentales del PCM utilizado, constituyen parámetros importantes a tomar en cuenta: sus propiedades mecánicas, la conductividad térmica del sistema seleccionado, la variación promedio de temperatura ambiente en el lugar que se desea climatizar y la selección de una geometría acorde con las particularidades del recinto donde se desee instalar este tipo de climatización.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Ramos Reyes, N. S., Horta Rangel, F. A., & González Arias, A. (2024). Climatización pasiva de viviendas con compuestos PCM. Eco Solar, (84), 11-15. Recuperado a partir de https://ecosolar.cubaenergia.cu/index.php/ecosolar/article/view/142
Sección
Artículo original

Citas

Bontemps, A. J. & Royon, L. (2024). Technologies Using Phase Change Materials (PCM) for Building Passive Cooling, Sustainable Architecture and Urban Development 1, p.101. https://www.irbnet.de/daten/iconda/CIB22601.pdf
Bravo, J.P.; Venegas, T.; Correa, E.; Álamos, A. Sepúlveda, F. Vasco, D.A. & Barreneche, C. (2020). Experimental and Computational Study of the Implementation of mPCM-Modified Gypsum Boards in a Test Enclosure. Buildings, 10 (15). https://www.mdpi.com/2075-5309/10/1/15
Cheng, W.L; Li, W.W.; Nian, Y.L. & Xia, W.D. (2018).Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials. Int. J. Heat Mass Transf. 116, 507–511. https://www.sciencedirect.com/science/article/abs/pii/ S0017931017302454
Khaled, S. P. (2024). The use of Phase-Change-Material as cooling-strategy for buildings in the Chilean climate. International Journal of Low Carbon Technologies 3(2). https://www.researchgate.net/publication/245506364_The_ use_of_Phase-Change-Material_as_cooling-strategy_for_ buildings_in_the_Chilean_climate
Kosny, J.; Biswas, K; Miller, W & Kriner, S. (2012). Field thermal performances of naturally ventilated solar roof with PCM heat sink”, Solar Energy 86, 2504-2514. https://www.sciencedirect.com/science/article/abs/pii/S0038092X12001983
Kuta M.; Matuszewska, D. & Wójcik, T.M. (2017). Reasonableness of phase change materials use for air conditioning–a short review. E3S Web of Conferences 14 e3sconf/201. Energy and Fuels. DOI: 10.1051/ 71401033. https://www. e3s-conferences.org/articles/e3sconf/pdf/2017/02/e3sconf_ef2017_01033.pdf
Mohamed, N.H.; Soliman, F.S.; El Maghraby, H. & Moustfa, Y.M. (2017). Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by nano alumina: Energy storage. Sustain. Energy Rev. 70, 1052–1058. https://www.researchgate.net/publication/311690167_ Thermal_conductivity_enhancement_of_treated_petroleum_waxes_as_phase_change_material_by_a_nano_ alumina_Energy_storage
Munteanu I.G. & Tudose ETI. (2022). Laboratory Configurations for PCM-TES materials: A Review. Journal of Advanced Thermal Science Research 9, 50-68. https://avantipublishers. com/index.php/jatsr/article/view/1271
Podara C.V.; Kartsonakis, I.A. & Charitidis, C.A. (2021). Towards Phase Change Materials for Thermal Energy Storage: Classification, Improvements and Applications in the Building Sector. Appl. Sci. 11, 1490. https://doi.org/10.3390/ app11041490
Qureshi Z.A.; Ali, H.M. & Khushnood, S. (2018). Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. Int. J. Heat Mass Transf. 127, 838–856. https://www.researchgate. net/publication/327368576_Recent_advances_on_thermal_conductivity_enhancement_of_phase_change_materials_for_energy_storage_system_A_review
Salunkhe, P.B. & Shembekar, P.S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews 16, 5603–5616. https://www.sciencedirect.com/ science/article/abs/pii/S1364032112003711
Servicio Técnico de Asistencia Preventiva U.G.T. - Castilla y León. (2024). Efectos del trabajo en ambientes calurosos. http:// www.ugtcyl.es/prevencion/archivos/medicina/calor-cuerpo-humano.pdf
Shaikha U. I.; Surc S.K.A. & Royc, A. (2023). Performance analysis of an energy efficient pcm-based room cooling system. Frontiers in Heat and Mass Transfer (FHMT) 20 (28). https:// www.techscience.com/fhmt/v20n1/52390
Waqas Adeel & Ud Din Zia. (2013). Phase change material (PCM) storage for free cooling of buildings. Renewable and Sustainable Energy Reviews 18; 607–625. https://www.sciencedirect.com/science/article/abs/pii/S136403211200576X
WeatherSpark.com. The Weather Year Round Anywhere on Earth. (2024), https://es.weatherspark.com/y/16780/Clima-promedio-en-La-Habana-Cuba-durante-todo-el-a%C3%B1o
Zhang, H; Wang, X. & Wu, D. (2010). Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J. Colloid Interface Sci. 343, 246–255. https://pubmed.ncbi.nlm.nih.gov/20035943/
Zhang, Y.; Wang K.; Tao, W. & Li, D. (2019). Preparation of microencapsulated phase change materials used graphene oxide to improve thermal stability and its incorporation in gypsum materials. Constr. Build. Mater. 224, 48–56. https://www.mdpi.com/2073-4360/15/11/2441